

10GBASE-SR SFP+ 850nm 300m DOM Transceiver

SFP-10GSR-85

Application

- 10GBASE-SR/SW 10G Ethernet
- 1200-Mx-SN-I 10G Fibre Channel

Features

- Hot-pluggable SFP+ footprint
- Supports 9.95 to 10.5 Gb/s bit rates
- Power dissipation < 1W
- RoHS-6 compliant (lead-free)
- Industrial temperature range -40° C to 85° C
- Single 3.3Vpower supply
- Maximum link length of 400m on
- 4700 MHZ-km OM4 MMF

- Heated 850nm VCSEL laser
- Receiver limiting electrical interface
- Duplex LC connector
- Built-in digital diagnostic functions

Description

10Gb/s SFP+ transceivers are designed for use in 10-Gigabit Ethernet links over multimode fiber. They are compliant with SFF-8431, SFF-8432, IEEE 802.3ae 10GBASE-SR/SW and 10G Fibre Channel 1200-Mx-SN-I. Digital diagnostics functions are available via a 2-wire serial interface, as specified in SFF-8472.

The transceiver is a "limiting module", i.e., it employs a limiting receiver. Host board designers using an EDC PHY IC should follow the IC manufacturer's recommended settings for interoperating the host-board EDC PHY with a limiting receiver SFP+ module. The optical transceivers are compliant per the RoHS Directive 2011/65/EU.

Product Specifications

I.General Specifications

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Bit Rate	BR	9.95		10.5	Gb/s	1
Bit Error Ratio	BER			10 ⁻¹²		2

		Maximum Sup _l	oorted Dis	stances			
Fiber Type	850nm OFL Bandwidth						
62 5	160 MHz-km	Lmay			26	***	
62.5μm	OM1 200 MHz-km	Lmax			33	m	
	400 MHz-km				66		
	OM2 500 MHz-km				82		
50μm	OM3 2000 MHz-km	Lmax			300	m	
	OM4 4700 MHz-km			400			

Notes:

- 1.10GBASE-SR/SW.
- 2. Tested with a 2 31 1 PRBS.

II. Absolute Maximum Ratings

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Maximum Supply Voltage	Vcc	-0.5		4.0	V	
Storage Temperature	T _S	-40		85	° C	
Case Operating Temperature	T_A	-40		85	° C	
Relative Humidity	RH	0		85	%	1

Notes:

III. Electrical Characteristics (TOP= 0 to 70 $^{\circ}$ C, VCC = 3.14 to 3.46 Volts)

Parameter	Symbol	Min	Тур.	Max	Unit	Ref.
Supply Voltage	Vcc	3.14		3.46	V	
Supply Current	lcc			289	mA	

	Ti	ransmitter				
Input differential impedance	R_{in}		100		Ω	1
Differential data input swing	Vin,pp	180		700	mV	
Transmit Disable Voltage	V_D	2		Vcc	V	
Transmit Enable Voltage	V_{EN}	Vee		Vee+ 0.8	V	
		Receiver				
Differential data output swing	Vout,pp	300		850	mV	2,6
Output rise time and fall time	t _r	28			ps	3
LOS asserted	$V_{LOSfault}$	2		Vcc _{HOST}	V	4
LOS de-asserted	$V_{LOSnorm}$	Vee		Vee+0.8	V	4
Power Supply Noise Tolerance	VccT/VccR		Per SFF-843	31 Rev 4.1	mVpp	5

^{1.} Non-condensing..

- 1. Connected directly to TX data input pins. AC coupling from pins into laser driver IC.
- 2. Into 100Ω differential termination.
- 3.20 80 % . Measured with Module Compliance Test Board and OMA test pattern. Use of four 1's and four 0's in sequence in the PRBS^9 is an acceptable alternative. SFF-8431 Rev 4.1.
- 4.LOS is an open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on the host board. Normal operation is logic 0; loss of signal is logic 1.
- 5. Testing methodology per SFF-8431. Rev 4.1
- 6. The FTLX8573D3BTL is a "limiting module", i.e., it employs a limiting receiver. Host board designers using an EDC PHY IC should follow the IC manufacturer's recommended settings for interoperating the host-board EDC PHY with a limiting receiver SFP+ module.

IV. Optical Characteristics (TOP = -40 to 85 $^{\circ}$ C, VCC = 3.14 to 3.46 V)

Parameter	Symbol	Min	Тур.	Max	Unit	Note	
Transmitter (Tx)							
Optical Modulation Amplitude (OMA)			-1.5		dBm	1	
Average Launch Power	P _{AVE}	-7.3		-1	dBm	2	
Optical Wavelength	λ	840	850	860	nm	1	
RMS Spectral Width	$\Delta \lambda_{rms}$			0.45	dB	1	
Optical Extinction Ratio	ER	3.0	5.5		dB		
Transmitter and Dispersion Penalty	TDP			3.9	dB		
Average Launch power of OFF transmitter	P _{OFF}			-30	dBm		
Tx Jitter	Tx_{j}	F	Per IEEE 802.3ae re	equirements			
Encircled Flux	<4.5μm <19μm	86		30	%	3	
Relative Intensity Noise	RIN ₁₂ OMA			-128	dB/Hz		

	Recei	ver (Rx)				
Receiver Sensitivity (OMA) @ 10.3Gb/s	R _{SENS1}			-11.1	dBm	4
Stressed Receiver Sensitivity (OMA) @ 10.3Gb/s	R _{SENS2}			-7.5	dBm	5
Maximum Input Power	P_{MAX}	+0.5			dBm	
Wavelength Range	λ_{C}	840		860	nm	
Receiver Reflectance	LOS _D			-12	dB	
LOS De-Assert	LOS _A			-14	dBm	
LOS Assert	LOS _A	-30	-23		dBm	
LOS Hysteresis		0.5			dB	

- 1. Per Tradeoff Table 52.8, IEEE 802.3ae 2005
- $2. Average\ Power\ figures\ are\ informative\ only,\ per\ IEEE 802.3ae.$
- 3. Measured into Type A1a (50/125 μm multimode) fiber per ANSI/TIA/EIA-455-203-2.
- 4. Measured with worst ER; BER<10-12; 231 1 PRBS.
- 5. Per IEEE 802.3ae.

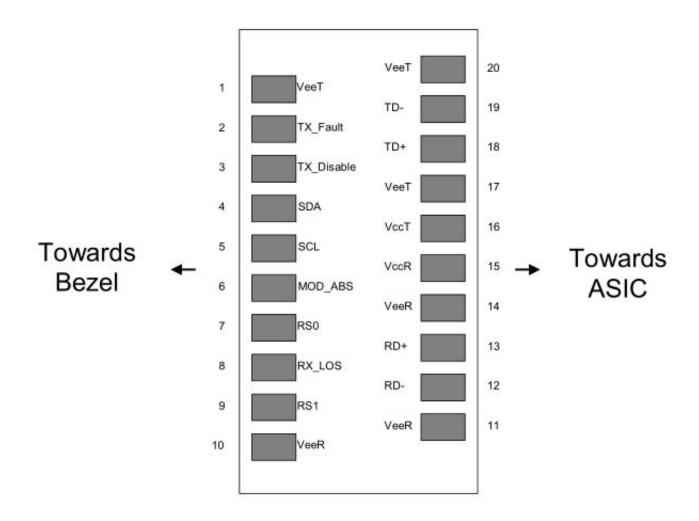
V.Digital Diagnostic Specifications

The transceiver can be used in host systems that require either internally or externally calibrated digital diagnostics.

Parameter	Symbol	Min	Тур.	Max	Units	Ref.
	A	ccuracy				
Internally measured transceiver temperature	DD_Temp	-3		3	°C	
Internally measured transceiver supply voltage	$DD_{Voltage}$	-100		100	mV	
Measured TX bias current	DD_Bias	-10		10	%	1
Measured TX output power	DD _{Tx-Power}	-2		2	dB	
Measured RX received average optical power	$DD_Rx\text{-Power}$	-2		2	dB	

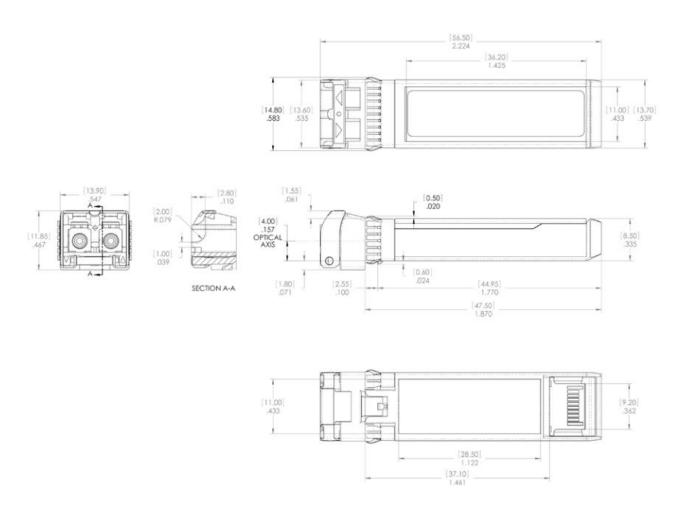
Parameter	Symbol	Min	Тур.	Max	Units	Ref.		
	Dynamic Range for Rated Accuracy							
Internally measured transceiver temperature	DD_Temp	-40		85	°C			
Internally measured transceiver supply voltage	$DD_{Voltage}$	3.14		3.46	V			
Measured TX bias current	DD_Bias	0		20	mA			
Measured TX output power	$DD_Tx ext{-Power}$	-9		-2.5	dBm			
Measured RX received average optical power	$DD_Rx\text{-Power}$	-20		0	dBm			
	Max Re	porting Ran	ge					
Internally measured transceiver temperature	DD_Temp	-40		125	°C			
Internally measured transceiver supply voltage	$DD_{Voltage}$	2.8		4.0	V			
Measured TX bias current	DD_Bias	0		20	mA			
Measured TX output power	$DD_Tx ext{-Power}$	-10		-3	dBm			
Measured RX received average optical power	$DD_Rx ext{-Powe}$	-22		0	dBm			

1. Accuracy of Measured Tx Bias Current is 10% of the actual Bias Current from the laser driver to the laser.

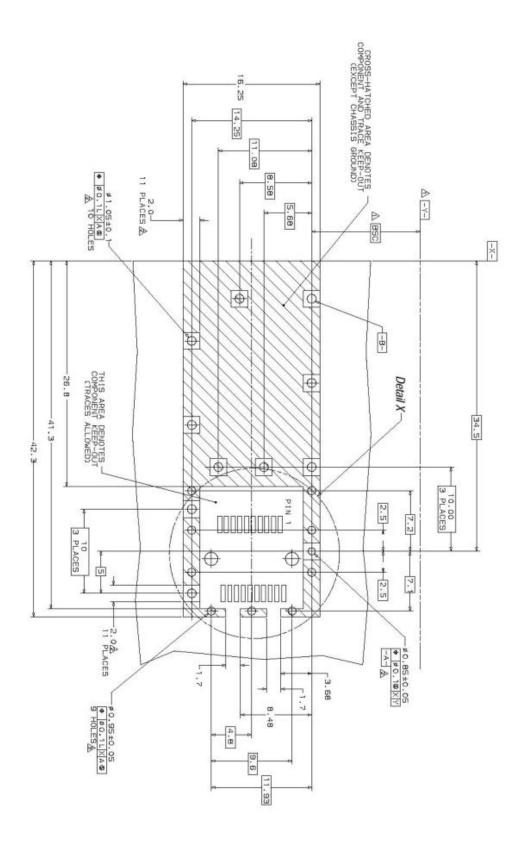


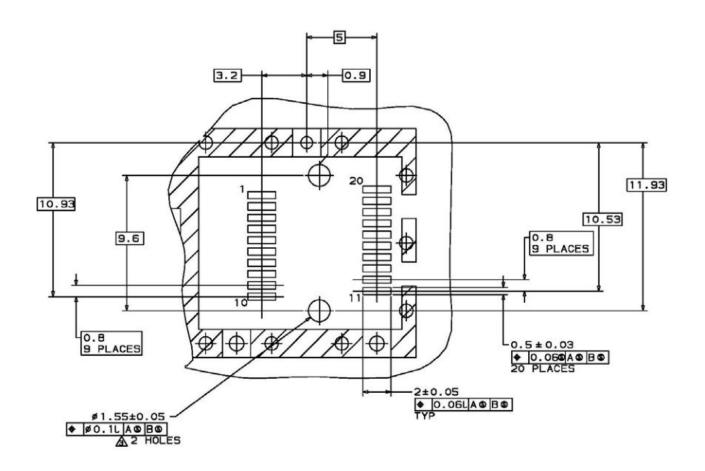
VI. Pin Description

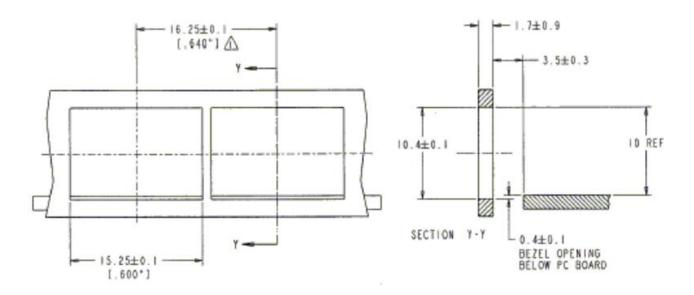
Pin	Symbol	Name/Description	Ref.
1	V_{EET}	Transmitter Ground(Common with Receiver Ground)	1
2	T _{FAULT}	Transmitter Fault	2
3	T_{DIS}	Transmitter Disable. Laser output disabled on high or open.	3
4	SDA	2-wire Serial Interface Data Line	4
5	SCL	2-wire Serial Interface Clock Line	4
6	MOD_ABS	Module Absent. Grounded within the module	4
7	RS0	No connection required	
8	RX_LOS	Loss of Signal indication. Logic 0 indicates normal operation.	5
9	RS1	No connection required	
10	V_{EER}	Receiver Ground(Common with Transmitter Ground)	1
11	V_{EER}	Receiver Ground(Common with Transmitter Ground)	1
12	RD-	Receiver Inverted DATA out. AC Coupled.	
13	RD+	Receiver Non-inverted DATA out. AC Coupled.	
14	V_{EER}	Receiver Ground(Common with Transmitter Ground)	1
15	V_{CCR}	Receiver Power Supply	
16	V_{CCT}	Transmitter Power Supply	
17	V_{EET}	Transmitter Ground(Common with Receiver Ground)	1
18	TD+	Transmitter Non-Inverted DATA in. AC Coupled.	
19	TD-	Transmitter Inverted DATA in. AC Coupled.	
20	V_{EET}	Transmitter Ground(Common with Receiver Ground)	1



- 1. Circuit ground is internally isolated from chassis ground.
- 2.T FAULT is an open collector/drain output, which should be pulled up with a 4.7k 10k Ohms resistor on the host board if intended for use. Pull up voltage should be between 2.0V to Vcc + 0.3V. A high output indicates a transmitter fault caused by either the TX bias current or the TX output power exceeding the preset alarm thresholds. A low output indicates normal operation. In the low state, the output is pulled to <0.8V.
- 3. Laser output disabled on T DIS > 2.0V or open, enabled on T DIS < 0.8V.
- 4. Should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. MOD_ABS pulls line low to indicate module is plugged in.
- 5.LOS is open collector output. Should be pulled up with $4.7k\Omega 10k\Omega$ on host board to a voltage between 2.0V and 3.6V. Logic 0 indicates normal operation; logic 1 indicates loss of signal.


VII. Mechanical Specifications




VIII. Host Board SFP+ Connector Recommendations

<u>Datum</u> and Basic Dimension Established by Customer <u>ARads</u> and Vias are Chassis Ground, 11 Places <u>A</u>Through Holes are Unplated

NOTES:

ARE FOR REFERENCE ONLY

 NOT RECOMMENDED FOR PCI EXPANSION CARD APPLICATIONS

Test Center

FS.COM transceivers are tested to ensure connectivity and compatibility in our test center before shipped out. FS.COM test center is supported by a variety of mainstream original brand switches and groups of professional staff, helping our customers make the most efficient use of our products in their systems, network designs and deployments.

The original switches could be found nowhere but at FS.COM test center, eg: Juniper MX960 & EX 4300 series, Cisco Nexus 9396PX & Cisco ASR 9000 Series, HP 5900 Series & HP 5406R ZL2 V3(J9996A), Arista 7050S-64, Brocade ICX7750-26Q & ICX6610-48, Avaya VSP 7000 MDA 2, etc.

Cisco ASR 9000 Series(A9K-MPA-1X40GE)

ARISTA 7050S-64(DCS-7050S-64)

Juniper MX960

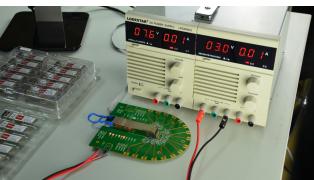
Brocade ICX 7750-26Q

Extreme Networks X670V VIM-40G4X

Mellanox M3601Q

Dell N4032F

HP 5406R ZL2 V3(J9996A)


AVAYA 7024XLS(7002QQ-MDA)

Test Assured Program

FS.COM truly understands the value of compatibility and interoperability to each optics. Every module FS.COM provides must run through programming and an extensive series of platform diagnostic tests to prove its performance and compatibility. In our test center, we care of every detail from staff to facilities—professionally trained staff, advanced test facilities and comprehensive original-brand switches, to ensure our customers to receive the optics with superior quality.

tracking the order, shipment and every part.

Our smart data system allows effective product management and Our in-house coding facility programs all of our parts to standard quality control according to the unique serial number, properly OEM specs for compatibility on all major vendors and systems such as Cisco, Juniper, Brocade, HP, Dell, Arista and so on.

With a comprehensive line of original-brand switches, we can The last test assured step to ensure our products to be shipped recreate an environment and test each optics in practical with perfect package. application to ensure quality and distance.

Order Information

Part Number	Description
SFP-10GSR-85	10GBASE-SR SFP+ 850nm 300m DOM Transceiver
SFP-10GLRM-31	10GBASE-LRM SFP+ 1310nm 220m DOM Transceiver
SFP-10GLR-31	10GBASE-LR SFP+ 1310nm 10km DOM Transceiver
SFP-10GER-55	10GBASE-ER SFP+ 1550nm 40km DOM Transceiver
SFP-10GZR-55	10GBASE-ZR SFP+ 1550nm 80km DOM Transceiver
SFP-10GZRC-55	10GBASE-ZR SFP+ 1550nm 100km DOM Transceiver
SFP-10GSR-85	Dual-Rate 1000BASE-SX and 10GBASE-SR SFP+ 850nm 300m DOM Transceiver
SFP-10GLR-31	Dual-Rate 1000BASE-LX and 10GBASE-LR SFP+ 1310nm 10km DOM Transceiver

Notes:

1.10G SFP+ transceiver module is individually tested on corresponding equipment such as Cisco, Arista, Juniper, Dell, Brocade and other brands, and passes the monitoring of FS.COM intelligent quality control system.

All statements, technical information, and recommendations related to the products here are based upon information believed to be reliable or accurate. However, the accuracy or completeness thereof is not guaranteed, and no responsibility is assumed for any inaccuracies. Please contact FS for more information.